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Examples of complex sample distributions
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Topsoil samples in Australia

[Marchant et al., 2013]

Pollutant (Total Petroleum 
Hydrocarbon) in Toulouse city

 Uneven spatial distribution with clusters and sparse samples in some regions
 Also owing to nonstationarities / anisotropies of the data generating process 

[Belbeze et al., 2019]
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Examples of complex sample distributions
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Examples of complex sample distributions
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Examples of complex sample distributions



Uncertainty (IQW)

Kriging
Quantile 

Random forest

Quantile 
Random forest w. 

spatial info.

Generative model 
w. spatial info.

Generative
model

depth depth

depthdepthdepth

> 6
> 6

Motivating real cases

= Motivation for a benchmark of probabilistic ML spatial models
1. What is the most optimal model(s) ?
2. How to assess the reliability of prediction uncertainty?
3. What is the influence of having clustered / sparse data?



Benchmark real case with ground truth
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L1B radiances (0:459 μm to 0:479 μm band)
from the MODIS instrument - Aqua satellite 

(04 December 2018 15:00 UTC) 
extracted from Zammit-Mangion et al. (2022) based on 

https://ladsweb.modaps.eosdis.nasa.gov
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clouds

ice A
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Test profile A

ice
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Benchmark real case with ground truth

L1B radiances (0:459 μm to 0:479 μm band)
from the MODIS instrument - Aqua satellite 

(04 December 2018 15:00 UTC) 
extracted from Zammit-Mangion et al. (2022) based on 

https://ladsweb.modaps.eosdis.nasa.gov
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L1B radiances (0:459 μm to 0:479 μm band)
from the MODIS instrument - Aqua satellite 

(04 December 2018 15:00 UTC) 
extracted from Zammit-Mangion et al. (2022) based on 

https://ladsweb.modaps.eosdis.nasa.gov

clouds

ice RANDOM 2 CLUSTERS 4 CLUSTERS

N=500, No=20% of samples outside the clustered regions
2D Covariates = spatial coordinates

Benchmark real case with ground truth
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Performance scores
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Define the test set 𝑻 = (𝑿୧, 𝑦୧)௜ୀଵ,…௡ where the response Y is related to spatial coordinates X

 Measure of accuracy: coefficient of determination

ଶ ௜ ௜
ଶ

௜∈𝑻

௜
ଶ

௜∈𝑻

where µො is the ML conditional mean
Compared to

1.0
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Performance scores
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Define the test set 𝑻 = (𝑿୧, 𝑦୧)௜ୀଵ,…௡ where the response Y is related to spatial coordinates X

 Measure of accuracy: coefficient of determination

 Measure of ‘statistical’ accuracy (calibration): coverage score for prediction interval 𝑃𝐼 = [𝑄෠ ଶ⁄  ;  𝑄෠ଵି ଶ⁄ ]

ଶ ௜ ௜
ଶ

௜∈𝑻

௜
ଶ

௜∈𝑻

௜


௜∈𝑻

where µො is the ML conditional mean

where 𝑄෠ is the ML conditional quantile

Compared to
1.0

Compared to
1 - 
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Performance scores
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Define the test set 𝑻 = (𝑿୧, 𝑦୧)௜ୀଵ,…௡ where the response Y is related to spatial coordinates X

 Measure of accuracy: coefficient of determination

 Measure (weighted) informativeness of 𝑃𝐼 : interval score [Gneiting & Raftery 2007]

ଶ ௜ ௜
ଶ

௜∈𝑻

௜
ଶ

௜∈𝑻

௜


௜∈𝑻

where µො is the ML conditional mean

where 𝑄෠ is the ML conditional quantile

௜
 ଵି ଶ⁄  ଶ⁄


 ଶ⁄

௜ ௜
 ଶ⁄

 ௜
ଵି ଶ⁄

௜
ଵି ଶ⁄

sharpness overpredictionunderprediction

Compared to
1.0

Compared to
1 - 

Compared to
0.0

 Measure of ‘statistical’ accuracy (calibration): coverage score for prediction interval 𝑃𝐼 = [𝑄෠ ଶ⁄  ;  𝑄෠ଵି ଶ⁄ ]



Class 1 of spatial probabilistic ML models: GP-like
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 Gaussian process regression (‘typical / shallow’  GP)

∗ ∗ ∗

Conditioned on the data points (𝑿୧, 𝑌୧)௜ୀଵ,…௡ where the response Y is related to spatial coordinates X

where the conditional µ∗, 𝐶∗ are given by the ‘typical’ kriging equations from X,Y [Rasmussen & Williams 2006]



Class 1 of spatial probabilistic ML models: GP-like
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 Deep Gaussian process (DGP): 

∗

୩
୍୬ୢ

Assumptions
 Latent GP W unit scale, noise free
 Conditional independence among nodes of W
 Isotropic lengths 

Full Bayesian inference using MCMC scheme combined
with Elliptical slice sampling for W [Sauer et al., 2022]  

Successive warping (special case of nested GPs) to handle nonstationarities [Wikle & Zammit-Mangion 2022]

Adapted from [Sauer et al. (2022)]

 Gaussian process regression (‘typical / shallow’  GP)

∗ ∗ ∗

Conditioned on the data points (𝑿୧, 𝑌୧)௜ୀଵ,…௡ where the response Y is related to spatial coordinates X

where the conditional µ∗, 𝐶∗ are given by the ‘typical’ kriging equations from X,Y [Rasmussen & Williams 2006]
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Class 2 of spatial probabilistic ML models: Generative like (GEN)

Based on the training data points (𝑿୧, 𝑌୧)௜ୀଵ,…௡ learn, 

Adversarial approach adapted from [Mohebbi Moghaddam et al. (2023)]
https://arxiv.org/pdf/2106.06976

∗ ∗ ∗
௑∗
௑,௒

Translate the problem into learn the ‘unknown’ predictive distribution 𝐹௑∗
௑,௒ from the training data points

Procedure:

1. Learn the joint distribution L using P1

2. Predict at ∗ by conditioning

௑∗
௑,௒ L ∗

3. Generate samples from ௑∗
௑,௒
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Class 2 of spatial probabilistic ML models: Generative like (GEN)

Based on the training data points (𝑿୧, 𝑌୧)௜ୀଵ,…௡ learn, 

Specificities of our problem:

 Data are tabular
 use of random forest RF instead of NN
[Watson et al., 2023] 
In this case, 𝐹௑,௒ = mixture of 1d density
distributions extracted from the RF leafs

 Spatial dependencies
 Introduce additional covariates corresponding
to highly correlated spatial fields
 Use of Euclidean Distance Fields
[Behrens et al., 2018]

∗ ∗ ∗
௑∗
௑,௒

Translate the problem into learn the ‘unknown’ predictive distribution 𝐹௑∗
௑,௒ from the training data points

Adapted from [Mohebbi Moghaddam et al. (2023)] https://arxiv.org/pdf/2106.06976
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Class 3 of spatial probabilistic ML models: Conformal predictions (CF)

Translate the problem into assessing a valid 𝑃𝐼 ∗   from the training data points

 Use of Split Conformal Prediction (SCP) [Vovk et al. (2005); Papadopoulos et al. (2002), Lei et al. 2018]



> 18

Class 3 of spatial probabilistic ML models: Conformal predictions (CF)

Stage 1: Estimate ML mean µ

Train data 

µ

Translate the problem into assessing a valid 𝑃𝐼 ∗   from the training data points

 Use of Split Conformal Prediction (SCP) [Vovk et al. (2005); Papadopoulos et al. (2002), Lei et al. 2018]

Adapted from [Zaffran (2023)] https://mzaffran.github.io
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Class 3 of spatial probabilistic ML models: Conformal predictions (CF)

Adapted from [Zaffran (2023)] https://mzaffran.github.io

Stage 1: Estimate ML mean µ

Train data Calibration data 

cs

csµ

Translate the problem into assessing a valid 𝑃𝐼 ∗   from the training data points

 Use of Split Conformal Prediction (SCP) [Vovk et al. (2005); Papadopoulos et al. (2002), Lei et al. 2018]

Stage 2: Estimate the 
non-conformity scores cs

using µ
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Class 3 of spatial probabilistic ML models: Conformal predictions (CF)

 Use of Split Conformal Prediction (SCP) [Vovk et al. (2005); Papadopoulos et al. (2002), Lei et al. 2018]

Stage 1: Estimate ML mean µ
Stage 3: Compute the 

(1-)  empirical quantile 𝑄ଵି (𝑆) of 
𝑆 = {𝒄𝒔}஼௔௟∪ {+}

Calibration and test data need 
to be exchangeable!!

Train data Calibration data Test data 
cs

csµ

Stage 2: Estimate the 
non-conformity scores cs

using µ

Translate the problem into assessing a valid 𝑃𝐼 ∗   from the training data points

L ଵ ଵ ୬ ୬ L (ଵ) (ଵ) (୬) (୬)

For any permutation  of (1,…,n)

Adapted from [Zaffran (2023)] https://mzaffran.github.io
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Class 3 of spatial probabilistic ML models: Conformal predictions (CF)

Stage 1: Estimate ML mean µ
Stage 3: Compute the 

(1-)  empirical quantile 𝑄ଵି (𝑆) of 
𝑆 = {𝑐𝑠}஼௔௟∪ {+}

Train data Calibration data Test data 
cs

csµ

 Adaptation to the spatial context [Mao et al. (2020)]

୧
୧ ୧

 ୧
where µ, are given by a GPGlobal Local

Same as Global but over a 
region around the prediction point
determined via CV with
maximisation of interval score

Stage 2: Estimate the 
non-conformity scores cs

Translate the problem into assessing a valid 𝑃𝐼 ∗   from the training data points

 Use of Split Conformal Prediction (SCP) [Vovk et al. (2005); Papadopoulos et al. (2002), Lei et al. 2018]
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An example of prediction – real case – RANDOM, N=500

90% unc. enveloppe Mean

Shallow
GP

Deep 
DGP2

GEN GENspa

CF-G CF-L
Computation
 DGP,GEN: quantiles computed from a set of 500 stochastic simulations
 CF: direct use of the conformal predictions
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An example of prediction – real case – RANDOM, N=500

90% unc. enveloppe Mean

Shallow GP captures medium
range variations

Shallow
GP

Deep 
DGP2

GEN GENspa

CF-G CF-L
Computation
 DGP,GEN: quantiles computed from a set of 500 stochastic simulations
 CF: direct use of the conformal predictions
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An example of prediction – real case – RANDOM, N=500

90% unc. enveloppe Mean

Shallow GP captures medium
range variations

 DGP, GENspa capture variations
of multiple ranges of variation

Shallow
GP

Deep 
DGP2

GENspaGEN

CF-G CF-L
Computation
 DGP,GEN: quantiles computed from a set of 500 stochastic simulations
 CF: direct use of the conformal predictions
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An example of prediction – real case – RANDOM, N=500

90% unc. enveloppe Mean

Shallow GP captures medium
range variations

 DGP, GENspa capture variations
of multiple ranges of variation

 GEN provides too wide
prediction intervals

Shallow
GP

Deep 
DGP2

GEN GENspa

CF-G CF-L
Computation
 DGP,GEN: quantiles computed from a set of 500 stochastic simulations
 CF: direct use of the conformal predictions
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An example of prediction – real case – RANDOM, N=500

90% unc. enveloppe Mean

Q²

|cov – 0.90|

90% int. score

Score – min(Score)

Shallow
GP

Deep 
DGP2

GEN GENspa

CF-G CF-L

GEN GENspa CF-G CF-L DGPGP
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An example of prediction – real case – RANDOM, N=500

90% unc. enveloppe Mean

Q²

|cov – 0.90|

90% int. score

Score – min(Score)

Shallow
GP

Deep 
DGP2

GEN GENspa

CF-G CF-L

GEN GENspa CF-G CF-L 

GEN GENspa CF-G CF-L DGPGP

DGPGP
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An example of prediction – real case – RANDOM, N=500

90% unc. enveloppe Mean

Q²

|cov – 0.90|

90% int. score

Score – min(Score)

Shallow
GP

Deep 
DGP2

GEN GENspa

CF-G CF-L

GEN GENspa CF-G CF-L 

GEN GENspa CF-G CF-L 

GEN GENspa CF-G CF-L 

DGPGP

DGPGP

DGPGP
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An example of prediction – real case – CLUSTERED, N=500

> 2990% unc. enveloppe Mean

Q²

|cov – 0.90|

90% int. score

Score – min(Score)

Shallow
GP

Deep 
DGP2

GEN GENspa

CF-G CF-L

GEN GENspa CF-G CF-L 

GEN GENspa CF-G CF-L 

GEN GENspa CF-G CF-L 

DGPGP

DGPGP

DGPGP
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Results of 25 repeated random experiments – real case

RANDOM, N=500 2 CLUSTERS 4 CLUSTERS

GEN GENspa GP DGP2 DGP3 CF-G CF-L GEN GENspa GP DGP2 DGP3 CF-G CF-L

GEN GENspa GP DGP2 DGP3 CF-G CF-L



CF-LCF-GDGP3DGP2GPGENspaGEN

0.350.340.570.470.350.350.411-Q²

0.070.040.040.040.070.030.09|0.9-Coverage|

0.090.110.100.100.110.080.10Interval score 90%

0.150.100.050.070.020.080.17|0.5-Coverage|

0.160.200.120.110.130.090.08Interval score 50%
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Synthesis – real case – median over 25 random experiments

Median value based on 25 repeated random experiments

 Deep GP performs well for uncertainty-oriented scores
 Overall, GENspa is the best performing model
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CF-LCF-GDGP3DGP2GPGENspaGEN

0.350.340.570.470.350.350.411-Q²

0.070.040.040.040.070.030.09|0.9-Coverage|

0.090.110.100.100.110.080.10Interval score 90%

0.150.100.050.070.020.080.17|0.5-Coverage|

0.160.200.120.110.130.090.08Interval score 50%

The clustering worsens performance:
 Q² decreases by  ~70% (in average)
 Interval score for moderate quantiles increases by 120% (in average)

0.600.590.810.820.770.580.671-Q²
0.030.070.070.080.060.040.06|0.9-Coverage|

0.070.050.160.150.170.070.13Interval score 90%
0.130.130.240.220.210.190.20|0.5-Coverage|

0.230.240.290.270.280.210.25Interval score 50%

1 cluster

Synthesis – real case – median over 25 random experiments
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CF-LCF-GDGP3DGP2GPGENspaGEN

0.350.340.570.470.350.350.411-Q²

0.070.040.040.040.070.030.09|0.9-Coverage|

0.090.110.100.100.110.080.10Interval score 90%

0.150.100.050.070.020.080.17|0.5-Coverage|

0.160.200.120.110.130.090.08Interval score 50%

0.600.590.810.820.770.580.671-Q²
0.030.070.070.080.060.040.06|0.9-Coverage|

0.070.050.160.150.170.070.13Interval score 90%
0.130.130.240.220.210.190.20|0.5-Coverage|

0.230.240.290.270.280.210.25Interval score 50%

 Shalow or Deep GP performance worsens due to clustering

1 cluster

Synthesis – real case – median over 25 random experiments
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CF-LCF-GDGP3DGP2GPGENspaGEN

0.350.340.570.470.350.350.411-Q²

0.070.040.040.040.070.030.09|0.9-Coverage|

0.090.110.100.100.110.080.10Interval score 90%

0.150.100.050.070.020.080.17|0.5-Coverage|

0.160.200.120.110.130.090.08Interval score 50%

0.600.590.810.820.770.580.671-Q²
0.030.070.070.080.060.040.06|0.9-Coverage|

0.070.050.160.150.170.070.13Interval score 90%
0.130.130.240.220.210.190.20|0.5-Coverage|

0.230.240.290.270.280.210.25Interval score 50%

 CF performs relatively well
 Overall, GENspa is the best performing model

1 cluster

Synthesis – real case – median over 25 random experiments
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CF-LCF-GDGP3DGP2GPGENspaGEN

0.350.340.570.470.350.350.411-Q²

0.070.040.040.040.070.030.09|0.9-Coverage|

0.090.110.100.100.110.080.10Interval score 90%

0.150.100.050.070.020.080.17|0.5-Coverage|

0.160.200.120.110.130.090.08Interval score 50%

0.680.680.730.690.580.540.601-Q²
0.030.060.080.080.060.050.07|0.9-Coverage|

0.090.090.130.120.170.070.17Interval score 90%
0.120.140.220.210.200.170.19|0.5-Coverage|

0.240.270.300.280.240.190.22Interval score 50%

 Same result for GENspa and CF
 2 clusters  more distributed information  GP slightly performs better

2 clusters

Synthesis – real case – median over 25 random experiments
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CF-LCF-GDGP3DGP2GPGENspaGEN

0.350.340.570.470.350.350.411-Q²

0.070.040.040.040.070.030.09|0.9-Coverage|

0.090.110.100.100.110.080.10Interval score 90%

0.150.100.050.070.020.080.17|0.5-Coverage|

0.160.200.120.110.130.090.08Interval score 50%

0.470.430.580.620.530.480.531-Q²

0.060.050.040.040.060.030.05|0.9-Coverage|

0.110.080.100.090.100.050.10Interval score 90%
0.100.120.190.190.210.170.19|0.5-Coverage|

0.200.220.220.220.250.180.21Interval score 50%

 Same conclusion as with 2 clusters 
 4 clusters  Even more distributed info.  some improvement of DGP

4 clusters

Synthesis – real case – median over 25 random experiments



CF-LCF-GDGP3DGP2GPGENspaGEN

0.350.340.570.470.350.350.411-Q²

0.070.040.040.040.070.030.09|0.9-Coverage|

0.090.110.100.100.110.080.10Interval score 90%

0.150.100.050.070.020.080.17|0.5-Coverage|

0.160.200.120.110.130.090.08Interval score 50%

0.470.430.580.620.530.480.531-Q²

0.060.050.040.040.060.030.05|0.9-Coverage|

0.110.080.100.090.100.050.10Interval score 90%
0.100.120.190.190.210.170.19|0.5-Coverage|

0.200.220.220.220.250.180.21Interval score 50%

3.004.007.006.005.002.001.00CPU time* *ranking based on 25 tests

Due to 
MCMC scheme

With
parallelisation

M
e

a
n

C
P

U
 t

im
e

 (
m

in
)

Synthesis – real case – median over 25 random experiments
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CF-LCF-GDGP3DGP2GPGENspaGEN

0.350.340.570.470.350.350.411-Q²

0.070.040.040.040.070.030.09|0.9-Coverage|

0.090.110.100.100.110.080.10Interval score 90%

0.150.100.050.070.020.080.17|0.5-Coverage|

0.160.200.120.110.130.090.08Interval score 50%

0.470.430.580.620.530.480.531-Q²

0.060.050.040.040.060.030.05|0.9-Coverage|

0.110.080.100.090.100.050.10Interval score 90%
0.100.120.190.190.210.170.19|0.5-Coverage|

0.200.220.220.220.250.180.21Interval score 50%

3.004.007.006.005.002.001.00CPU time*
4.002.007.007.005.001.001.00Impl. Effort** **ranking based

on my feedback

Careful
convergence analysis

Rapid convergence, 
few hyperparameters

Size of neighbour region
difficult to assess

Synthesis – real case – median over 25 random experiments
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Summary

> 39

 Complex sample distributions (cluster, sparse) result in performance decline 
(prediction accuracy AND uncertainty)

 Deep Gaussian Process performs well for random settings (coverage, interval score) but 
at the CPU time cost, + convergence checking

 Conformal predictions have an intermediate performance; no/slight improvement of the 
local version

 Generative model is robust to the presence of clusters, but need adequate modelling of 
spatial dependence 

 Results checked also by varying the size of the clusters, number of samples, number of 
samples outside the clustered region, the type of benchmark cases... 

 Next step? How to do when the ground truth is not available 
 cross validation for spatial data?



Open question: validity of a standard 10-fold random cross validation?

GEN GENspa GP DGP2 DGP3 CF-G CF-L

GEN GENspa GP DGP2 DGP3 CF-G CF-L

GEN GENspa GP DGP2 DGP3 CF-G CF-L
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Appendices



Watson et al. (2023); Blesch et al. (2025)
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Robustness to the characteristics of the sample distribution

Nox2 Rx2 Nox2 Rx2

|1 − 𝑄ଶ| +
𝑖𝑛𝑡௦௖௢௥௘ଽ଴ + 𝑐𝑜𝑣90 − 0.9 +

𝑖𝑛𝑡௦௖௢௥௘ହ଴ + |𝑐𝑜𝑣50 − 0.5|

m
e

di
an

(2
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e
xp
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Results of 25 repeated random experiments – real case – N=500

1-=90% =50%

?
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Results of 25 repeated random experiments – real case – N=125

?

1-=90% =50%



Benchmark synthetic case
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Zero-centered 2D Gaussian process with
spherical covariance (range=0.35,=0.5)

+
𝑋. sin(𝑋)

A
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Test profile A
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Robustness to the characteristics of the samples’ distribution - synthetic
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CV applied to dune case


