

- □ Uneven spatial distribution with clusters and sparse samples in some regions
- □ Also owing to **nonstationarities / anisotropies** of the data generating process

Topsoil samples in Australia

Pollutant (Total Petroleum Hydrocarbon) in Toulouse city

Interpolation of substratum topography in the dune systems of Pays de la Loire

Motivating real cases

- = Motivation for a benchmark of probabilistic ML spatial models
- 1. What is the most optimal model(s)?
- 2. How to assess the reliability of prediction uncertainty?
- 3. What is the influence of having clustered / sparse data?

Benchmark real case with ground truth

L1B radiances (0:459 µm to 0:479 µm band) from the MODIS instrument - Aqua satellite (04 December 2018 15:00 UTC)

extracted from Zammit-Mangion et al. (2022) based on https://ladsweb.modaps.eosdis.nasa.gov

> 7

Benchmark real case with ground truth

L1B radiances (0:459 µm to 0:479 µm band) from the MODIS instrument - Aqua satellite (04 December 2018 15:00 UTC)

extracted from Zammit-Mangion et al. (2022) based on https://ladsweb.modaps.eosdis.nasa.gov

Benchmark real case with ground truth

L1B radiances (0:459 µm to 0:479 µm band) from the MODIS instrument - Aqua satellite (04 December 2018 15:00 UTC) extracted from Zammit-Mangion et al. (2022) based on https://ladsweb.modaps.eosdis.nasa.gov

RANDOM 2 CLUSTERS 4 CLUSTERS

N=500, No=20% of samples outside the clustered regions 2D Covariates = **spatial coordinates**

Performance scores

Define the test set $T = (X_i, y_i)_{i=1,...n}$ where the response Y is related to spatial coordinates X

☐ Measure of accuracy: coefficient of determination

Performance scores

Define the test set $T = (X_i, y_i)_{i=1,...n}$ where the response Y is related to spatial coordinates X

■ Measure of accuracy: coefficient of determination

$$Q^2 = 1 - \frac{\sum_{i \in T} (y_i - \hat{\mu}_i)^2}{\sum_{i \in T} (y_i - \bar{y})^2}$$
 where $\hat{\mu}$ is the ML conditional mean

 \square Measure of 'statistical' accuracy (calibration): coverage score for prediction interval $PI^{\alpha} = [\hat{Q}^{\alpha/2}; \hat{Q}^{1-\alpha/2}]$

$$Cov = \frac{1}{|T|} \sum_{i \in T} \mathbf{1}(y_i \in PI^{\alpha})$$
 where \hat{Q} is the ML conditional quantile

Performance scores

Define the test set $T = (X_i, y_i)_{i=1,...n}$ where the response Y is related to spatial coordinates **X**

☐ Measure of accuracy: coefficient of determination

$$Q^2 = 1 - \frac{\sum_{i \in T} (y_i - \hat{\mu}_i)^2}{\sum_{i \in T} (y_i - \bar{y})^2} \quad \text{where } \hat{\mu} \text{ is the ML conditional mean}$$

 \Box Measure of 'statistical' accuracy (calibration): coverage score for prediction interval $PI^{\alpha} = [\hat{Q}^{\alpha/2}; \hat{Q}^{1-\alpha/2}]$

$$Cov = \frac{1}{|T|} \sum_{i \in T} \mathbf{1}(y_i \in PI^{\alpha})$$
 where \hat{Q} is the ML conditional quantile

 \square Measure (weighted) **informativeness** of PI^{α} : interval score [Gneiting & Raftery 2007]

$$IS_i^{\alpha} = (\widehat{Q}^{1-\alpha/2} - \widehat{Q}^{\alpha/2}) + \frac{2}{\alpha} (\widehat{Q}^{\alpha/2} - y_i) \mathbf{1} (y_i < \widehat{Q}^{\alpha/2}) + \frac{2}{\alpha} (y_i - \widehat{Q}^{1-\alpha/2}) \mathbf{1} (y_i > \widehat{Q}^{1-\alpha/2})$$
sharpness underprediction overprediction
$$\begin{array}{c} \text{Compared to} \\ \text{>} 12 \end{array}$$

Class 1 of spatial probabilistic ML models: GP-like

☐ Gaussian process regression ('typical / shallow' GP)

Conditioned on the data points $(X_i, Y_i)_{i=1,...n}$ where the response Y is related to spatial coordinates X $Y(X^*) \sim Gauss(\mu^*, C^*)$

where the conditional μ^* , C^* are given by the 'typical' kriging equations from X, Y [Rasmussen & Williams 2006]

Class 1 of spatial probabilistic ML models: GP-like

☐ Gaussian process regression ('typical / shallow' GP)

Conditioned on the data points $(X_i, Y_i)_{i=1...n}$ where the response Y is related to spatial coordinates **X**

$$Y(X^*) \sim Gauss(\mu^*, C^*)$$

where the conditional μ^* , C^* are given by the 'typical' kriging equations from X, Y [Rasmussen & Williams 2006]

□ Deep Gaussian process (DGP):

Successive warping (special case of nested GPs) to handle nonstationarities [Wikle & Zammit-Mangion 2022]

$$Y(X^*)|W \sim Gauss(0, C(W)))$$

$$W_{k} \sim^{Ind} Gauss(0, C(X)) \forall k = 1, ..., p$$

Assumptions

- Latent GP W unit scale, noise free
- Conditional independence among nodes of W
- Isotropic lengths θ

Full Bayesian inference using MCMC scheme combined with Elliptical slice sampling for W [Sauer et al., 2022] 14

Adapted from [Sauer et al. (2022)]

Class 2 of spatial probabilistic ML models: Generative like (GEN)

Translate the problem into learn the 'unknown' predictive distribution $F_{X^*}^{X,Y}$ from the training data points

Based on the training data points $(X_i, Y_i)_{i=1,...n}$ learn, $Y(X^*) \sim Gauss(x^*, \Sigma^*) \sim F_{X^*}^{X,Y}$

Procedure:

- 1. Learn the **joint distribution** $\mathcal{I}(Y, X)$ using P₁
- 2. Predict at X^* by **conditioning** $F_{X^*}^{X,Y} \sim \mathcal{I}(Y,X)|X=X^*$
- **3.** Generate samples from $F_{X^*}^{X,Y}$

Adversarial approach adapted from [Mohebbi Moghaddam et al., (2023)] https://arxiv.org/pdf/2106.06976

Class 2 of spatial probabilistic ML models: Generative like (GEN)

Translate the problem into learn the 'unknown' predictive distribution $F_{X^*}^{X,Y}$ from the training data points

Based on the training data points $(X_i, Y_i)_{i=1,...n}$ learn, $Y(X^*) \sim Gauss(x^*, \Sigma^*) \sim F_{X^*}^{X,Y}$

Specificities of our problem:

- ☐ Data are tabular
- → use of random forest RF instead of NN [Watson et al., 2023]
- \rightarrow In this case, $F^{X,Y}$ = mixture of 1d density distributions extracted from the RF leafs
- □ Spatial dependencies
- → Introduce additional covariates corresponding to highly correlated spatial fields
- → Use of Euclidean Distance Fields [Behrens et al., 2018]

Translate the problem into assessing a valid PI^{α} $Prob(Y^* \in PI^{\alpha}) \ge 1 - \alpha$ from the training data points

☐ Use of Split Conformal Prediction (SCP) [Vovk et al. (2005); Papadopoulos et al. (2002), Lei et al. 2018]

Translate the problem into assessing a valid PI^{α} $Prob(Y^* \in PI^{\alpha}) \ge 1 - \alpha$ from the training data points

☐ Use of Split Conformal Prediction (SCP) [Vovk et al. (2005); Papadopoulos et al. (2002), Lei et al. 2018]

Stage 1: Estimate ML mean µ

Translate the problem into assessing a valid PI^{α} $Prob(Y^* \in PI^{\alpha}) \ge 1 - \alpha$ from the training data points

☐ Use of Split Conformal Prediction (SCP) [Vovk et al. (2005); Papadopoulos et al. (2002), Lei et al. 2018]

Stage 1: Estimate ML mean μ

Stage 2: Estimate the non-conformity scores cs using μ

Translate the problem into assessing a valid PI^{α} $Prob(Y^* \in PI^{\alpha}) \ge 1 - \alpha$ from the training data points

☐ Use of Split Conformal Prediction (SCP) [Vovk et al. (2005); Papadopoulos et al. (2002), Lei et al. 2018]

Stage 1: Estimate ML mean µ

Stage 2: Estimate the non-conformity scores cs using μ

For any permutation σ of (1,...,n)

Stage 3: Compute the (1- α) empirical quantile $Q^{1-\alpha}(S)$ of $S = \{cs\}_{Cal} \cup \{+\infty\}$

Calibration and test data need to be exchangeable!!

Translate the problem into assessing a valid PI^{α} $Prob(Y^* \in PI^{\alpha}) \ge 1 - \alpha$ from the training data points

☐ Use of Split Conformal Prediction (SCP) [Vovk et al. (2005); Papadopoulos et al. (2002), Lei et al. 2018]

Stage 1: Estimate ML mean µ

Stage 2: Estimate the non-conformity scores *cs*

Stage 3: Compute the (1- α) empirical quantile $Q^{1-\alpha}(S)$ of $S = \{cs\}_{Cal} \cup \{+\infty\}$

☐ Adaptation to the spatial context [Mao et al. (2020)]

Global
$$cs_i = \frac{|y_i - \mu(X_i)|}{\sigma(X_i)}$$
 where μ, σ are given by a GP

Local

Same as **Global** but over a region around the prediction point determined via CV with maximisation of interval score

Computation

- □ DGP,GEN: quantiles computed from a set of 500 stochastic simulations
 - I CF: direct use of the conformal predictions

□Shallow GP captures medium range variations

90% unc. enveloppe

Computation

Mean

- □ DGP,GEN: quantiles computed from a set of 500 stochastic simulations
 - I CF: direct use of the conformal predictions

- □Shallow GP captures medium range variations
- □ DGP, GENspa capture variations of multiple ranges of variation

Computation

- ☐ DGP,GEN: quantiles computed from a set of 500 stochastic simulations
- **I** CF: direct use of the conformal predictions

- ☐ Shallow GP captures medium
- DGP, GENspa capture variations of multiple ranges of variation
- GEN provides wide too prediction intervals

Computation

- DGP,GEN: quantiles computed from a set of 500 stochastic simulations
- CF: direct use of the conformal predictions

Score - min(Score)

 Q^2

GENspa CF-G

CF-L

GP

DGP

GEN

 $|\cos - 0.90|$

An example of prediction – real case – Score - min(Score) **Shallow** Deep DGP2 GP Q^2 GENspa CF-G GP DGP GEN CF-L **GENspa GEN** $|\cos - 0.90|$ GP DGP GEN GENspa CF-G CF-L CF-G 90% int. score X-coord. (norm.)

> 29

DGP

GEN

GP

GENspa CF-G

CF-L

Mean

90% unc. enveloppe

Results of 25 repeated random experiments – real case

Median value based on 25 repeated random experiments

- ☐ Deep GP performs well for uncertainty-oriented scores
- ☐ Overall, GENspa is the best performing model

The clustering worsens performance:

- □ Q² decreases by ~70% (in average)
- ☐ Interval score for moderate quantiles increases by 120% (in average)

Shalow or Deep GP performance worsens due to clustering

	GEN	GENspa	GP	DGP2	DGP3	CF-G	CF-L
1-Q ²	0.41	0.35	0.35	0.47	0.57	0.34	0.35
0.9-Coverage	0.09	0.03	0.07	0.04	0.04	0.04	0.07
Interval score 90%	0.10	0.08	0.11	0.10	0.10	0.11	0.09
0.5-Coverage	0.17	0.08	0.02	0.07	0.05	0.10	0.15
Interval score 50%	0.08	0.09	0.13	0.11	0.12	0.20	0.16
1-Q ²	0.67	0.58	0.77	0.82	0.81	0.59	0.60
0.9-Coverage	0.06	0.04	0.06	0.08	0.07	0.07	0.03
Interval score 90%	0.13	0.07	0.17	0.15	0.16	0.05	0.07
0.5-Coverage	0.20	0.19	0.21	0.22	0.24	0.13	0.13
Interval score 50%	0.25	0.21	0.28	0.27	0.29	0.24	0.23

- ☐ CF performs relatively well
- ☐ Overall, GENspa is the best performing model

	GEN	GENspa	GP	DGP2	DGP3	CF-G	CF-L	
1-Q ²	0.41	0.35	0.35	0.47	0.57	0.34	0.35	276 200 220
0.9-Coverage	0.09	0.03	0.07	0.04	0.04	0.04	0.07	
Interval score 90%	0.10	0.08	0.11	0.10	0.10	0.11	0.09	
0.5-Coverage	0.17	0.08	0.02	0.07	0.05	0.10	0.15	
Interval score 50%	80.0	0.09	0.13	0.11	0.12	0.20	0.16	4 1 1 1 1 1
								2 clusters
$1-Q^2$	0.60	0.54	0.58	0.69	0.73	0.68	0.68	
0.9-Coverage	0.07	0.05	0.06	0.08	0.08	0.06	0.03	
Interval score 90%	0.17	0.07	0.17	0.12	0.13	0.09	0.09	•
0.5-Coverage	0.19	0.17	0.20	0.21	0.22	0.14	0.12	
Interval score 50%	0.22	0.19	0.24	0.28	0.30	0.27	0.24	-1, , • , • , • , • , • ,

- ☐ Same result for GENspa and CF
- □ 2 clusters → more distributed information → GP slightly performs better

- ☐ Same conclusion as with 2 clusters
- □ 4 clusters → Even more distributed info. → some improvement of DGP

Synthesis – real case – median over 25 random experiments

Synthesis – real case – median over 25 random experiments

Summary

- □ Complex sample distributions (cluster, sparse) result in performance decline (prediction accuracy AND uncertainty)
- □ Deep Gaussian Process performs well for random settings (coverage, interval score) but at the CPU time cost, + convergence checking
- Conformal predictions have an intermediate performance; no/slight improvement of the local version
- □ Generative model is robust to the presence of clusters, but need adequate modelling of spatial dependence
- □ **Results checked** also by varying the size of the clusters, number of samples, number of samples outside the clustered region, the type of benchmark cases...

> 39

- Next step? How to do when the ground truth is not available
- → cross validation for spatial data?

Open question: validity of a standard 10-fold random cross validation?

Aritz Adin *,1, Elias Teixeira Krainski2, Amanda Lenzi3, Zhedong Liu4,

Joaquín Martínez-Minaya5, Håvard Rue2

Thank you for your attention!

Merci pour votre attention!

We acknowledge BRGM for providing **SAPHIR** computing and storage resources

We acknowledge financial funding by ANR-HOUSES

(grant number: ANR-22-CE56-0006)

https://anrhouses.github.io/

References

- Behrens, T., Schmidt, K., Viscarra Rossel, R. A., Gries, P., Scholten, T., & MacMillan, R. A. (2018). Spatial modelling with Euclidean distance fields and machine learning. European journal of soil science, 69(5), 757-770.
- Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American statistical Association, 102(477), 359-378.
- Sauer, A., Gramacy, R. B., & Higdon, D. (2023). "Active Learning for Deep Gaussian Process Surrogates." Technometrics 65 (1): 4–18.
- Watson, D. S., Blesch, K., Kapar, J., & Wright, M. N. (2023). Adversarial random forests for density estimation and generative modeling. In International Conference on Artificial Intelligence and Statistics (pp. 5357-5375). PMLR.
- Wikle, C. K., & Zammit-Mangion, A. (2023). Statistical deep learning for spatial and spatiotemporal data. Annual Review of Statistics and Its Application, 10(1), 247-270.
- Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.
- Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic learning in a random world. Boston, MA: Springer US.
- Zammit-Mangion, A., Ng, T. L. J., Vu, Q., & Filippone, M. (2022). Deep compositional spatial models. Journal of the American Statistical Association, 117(540), 1787-1808.

Appendices

- 1. Fit unsupervised random forest (Shi and Horvath, 2006): First, permute feature values in the given dataset X randomly across instances to create naive synthetic dataset \tilde{X} . Then, fit a random forest \hat{f}^0 to distinguish instances from X and \tilde{X} (labeled accordingly), where splits in the forest's trees pick up the data's dependency structure.
- 2. If the accuracy of \hat{f}^0 is above 50%, new synthetic data is sampled from the leaves of forest \hat{f}^0 (generator step) and a new random forest \hat{f}^1 is fit to classify real and synthetic data (discriminator step).
- 3. Data generation and discrimination is continued for k iterations until the accuracy of \hat{f}^k drops down to 50% or below. This indicates that the algorithm has converged, implying that all feature dependencies have been learned and features are mutually independent in the leaves.
- 4. FORDE step (density estimation): The estimated joint density \hat{p}_{ARF} can thanks to the mutual independence assumption of features within the leaves be formulated as a mixture of products \hat{p}_l of univariate densities \hat{p}_{lj} for leaf l and feature j, which can be estimated with any arbitrary univariate density estimator within the random forest's leaves, weighted by the share of real data π_l that falls into l:

$$\hat{p}_{\mathsf{ARF}}(\mathbf{x}) = \sum_{l} \pi_{l} \, \hat{p}_{l}(\mathbf{x}) = \sum_{l} \pi_{l} \prod_{j} \hat{p}_{lj}(x_{j}).$$

- 5. FORGE step (data generation): Synthetic data is generated by drawing a leaf l from the random forest with probability π_l and then sampling from the estimated univariate densities \hat{p}_{lj} within that leaf.
- Once \hat{p}_{ARF} is estimated, ARF allows us to derive estimated conditional densities $\hat{p}_{ARF}(x_j|\mathbf{X}_C=\mathbf{x}_C)$ for fixed values \mathbf{x}_C with arbitrary conditioning sets C without the need of refitting the ARF:

$$\hat{p}_{ARF}(x_j|\mathbf{X}_C = \mathbf{x}_C) = \sum_{i} \pi'_l \, \hat{p}_{lj}(x_j)$$

with updated weights $\pi'_l := \pi_l \frac{\hat{p}_l(\mathbf{x}_C)}{\hat{p}_{\mathsf{ARF}}(\mathbf{x}_C)}$.

Watson et al. (2023); Blesch et al. (2025)

Robustness to the characteristics of the sample distribution

Results of 25 repeated random experiments – real case – N=500

Results of 25 repeated random experiments – real case – N=125

Benchmark synthetic case

Zero-centered 2D Gaussian process with spherical covariance (range=0.35, σ =0.5) + $X.\sin(X)$

Robustness to the characteristics of the samples' distribution - synthetic

CV applied to dune case

